
 65 

Working With Tables in ArcView 

As with Views and Scripts, Tables represent another document type in ArcView.  The 
concept of a table is what really separates a GIS from just a plain paper map.  Imagine 
that you are looking for a particular street on a roadmap.  The extent of the roadmap is 
such that it covers all the roads within a particular county.  If you are not familiar with 
that county, you could wind up spending a long time looking for that road.  You’re 
probably thinking, “Well, I could just use the map index to narrow down the location of 
that road.”  But you’re assuming the roadmap has an index.  By making such an 
assumption, you’ve made that road map more than just a plain paper map.  The index of 
the roadmap functions much like a table does is ArcView.  The table contains additional 
(non-graphic) information about a theme.  In the case of our roadmap, the corresponding 
roadmap table might contain information like road location, road length, road category 
(e.g. residential, primary, secondary, etc.), and road name.  The table acts as a database 
for the theme that appears in the view. 
 
To really take advantage of the power of GIS, you need to understand how tables work 
and what you can do with them.  This handout will illustrate some applications of tables 
especially as they apply to grid themes. 
 
Let’s say you had a grid showing land use over an area such as the one shown below: 

 If you click on the “Open Theme Table” button, or select the menu choice “Theme: 
Table…” a new window will appear that looks like the one at top left on the next page: 
 



 66 

This table is typical of what you would expect to see for 
a grid describing categorical data.  You can tell it is 
associated with a grid because grid tables typically have 
tables consisting of two columns (called “Fields”).  The 
first field has the name “Value” which corresponds to 
the values that appear in the grid’s legend as displayed in 
the view.  The second field has the name “Count” is 
simply a tally of the number of pixels of that value 
(category) within the grid.  Each row in the table is 
called a “Record”.  Looking at the first record in the 
table at right we say a “Value” of 11 appears 1391 times 
in this particular grid.  If we sum the “Counts” over all records, that sum should equal the 
total number of pixels in the grid that contain data other than “No Data” pixels. 
 
By now, you are probably wondering what the different categories correspond to.  The 
land use values above come from a standard numbering scheme (see Anderson et al….). 
As luck would have it, we have an external text file in tabular format (i.e. items in a given 

line are tab-delimited with a carriage return at the end of 
each line).  We can go to 
the project window (shown 
at left) and load this table 
into the ArcView 
environment by first either 
double-clicking on the 
“Tables” icon of the 
Project window, or by 
clicking on the “Add” 
button of the project 
window with the “Tables” 
icon selected.  In either 
case, a file browser dialog 

box will appear and you will need to specify the name of 
the external file.  In our case, this external file has the 
name “andlookup.txt”.  The result of this load 
operation produces a new window showing the contents 
of the external table as shown at right.  Quick inspection 
indicates that the field called “LU Code” in the external 
table has categories with numerical values that match the 
“Value” field of our “Attributes of Land Use” table 
accompanying the “Land Use” grid theme.  This is all very nice, but wouldn’t it be better 
if all the information was located in a single table?  ArcView makes this desire an easy 
one to accomplish.   
 



 67 

To join two tables together: 

1. You must first have two separate tables, each with a common field that you wish to 
join on.  (“Value” and “LU Code” are the common fields in this example.) 

2. Click on the common field name in the table you want to appear as the right hand 
portion of the new overall table.  (“LU Code” in this example.) 

3. Click on the common field name of the other table.  This table will appear as the left 
had portion of the new overall table.  (“Value” in this example.) 

4. Choose “Table: Join” from the menu. 
 
In the given example, you will note that the 
“Attributes of Land Use” table has changed to 
reflect the join that has just taken place.  The new 
table is shown at right.  You will note that the 
“LU Code” field has disappeared while the 
“Value” field remains.  The record that 
previously had a “LU Code” of 11 (Low Density 
Residential), now has a “Value” of 11.  Records 
with “LU Codes” not observed in the Land Use 
“Values” have disappeared (e.g. “LU Code” 
equal to 50, corresponding to a classification of 
“Water” does not appear in the updated 
“Attributes of Land Use” theme.  You should note that as demonstrated here, table 
joining has a directionality associated with it.  If we had joined the tables in the opposite 
order, the “Value” field would have disappeared, there would have been empty entries for 
the “Count” associated with categories such as “Water”, and the order of the fields (from 
left to right) would have been “LU Code”, “Classification”, and “Count”.  Further, the 
updated table would have been the one corresponding to “andlookup.txt”.  
Although we’ve illustrated a single join of two tables, it is possible to perform multiple 
joins across many tables (two at a time), provided there is always a common field being 
shared by the joined tables. 
 
Joining Tables in a Script 

Let’s now look at this process from the perspective of scripting in Avenue.  The 
following script performs the same join as we have just performed manually above. 
 
theView = av.FindDoc("View1") 
 
LUgrid = theView.FindTheme("Land Use").GetGrid 
ClassFile = "andlookup.txt" 
 
LookUpTable = av.FindDoc(ClassFile).GetVTab 
LookUpField = LookUpTable.FindField("LU code") 
LandUseTable = LUgrid.GetVTab 
LandUseField = LandUseTable.FindField("Value") 
LandUseTable.Join(LandUseField, LookUpTable, LookUpField) 



 68 

 
There are three commands in the above script that should be new to you.  The first 
command uses “GetVTab”: 
 

LookUpTable = av.FindDoc(ClassFile).GetVTab 
or 

LandUseTable = LUgrid.GetVTab 
 
These lines assign the variables LookUpTable and LandUseTable with the contents 
of the tables associated with “andlookup.txt” and the Land Use grid, respectively.  
(It is encouraged that you check the Help files for more information on the syntax of this 
command.  You might also want to look at the command GetFTab which gets the table 
associated with a Feature Theme, such as the familiar “pg_roads.shp”.) 
 
The second new command should look familiar to you, it is much like the command to 
find a particular theme in the view, but in this case we are finding a particular field in a 
table: 
 

LookUpField = LookUpTable.FindField("LU code") 
or 

LandUseField = LandUseTable.FindField("Value") 
 
These lines assign the variables LookUpField and LandUseField with the contents 
of the corresponding columns in LookUpTable and LandUseTable, respectively. 
 
Finally, the two tables are joined using the command: 
 

aVTab.Join (aToField, aFromVTab, aFromField) 
 
Let us call the table gaining additional information the “To” table, and the table that is 
providing that additional information the “From” table.   With this naming understanding, 
aVTab is the name of the “To” table, aToField is the name of the joining field in the 
“to” table, aFromVTab is the name of the “From” table, and aFromField is the name 
of the joining field in the “From” table.  For the specific example discussed above, this 
 
LandUseTable.Join(LandUseField, LookUpTable, LookUpField) 
 
The directionality of this command should be evident to you.  For instance, joining the 
tables in the opposite way: 
 
LookUpTable.Join(LookUpField, LandUseTable, LandUseField) 
 
would join the tables in the opposite direction, appending the contents of 
“andlookup.txt”. 
 



 69 

We can use joined tables in a powerful way to create a new grid based on the contents of 
the old grid and the joined table.  
For instance, say we had a field 
of additional information in 
“andlookup.txt” called 
“New Property”.  That field 
would also be appended when 
this table is joined to the 
“Attributes of Land Use” table.  
The new table might look like 
the one at left.  Now for a given 
pixel value of say “11” which 
corresponds to a “Low Density 
Residential” classification, we 
also have a new property which has a value of “54”.  We can create a new grid that 
makes this assignment formally using the Lookup command as shown below: 

New_Grid = LUgrid.Lookup(“New Property”) 
This new grid is shown in the view below: 

 
You will notice that this grid looks similar to the 
previous grid, but has fewer categories owing to 
the fact that several different land uses mapped to 
values of  “New Property” of 36, 49, and 77.  The 
table associated with “New Grid” is shown at left.  
You should verify that the “Counts” shown at left 
are consistent with the reassignments performed on 
the original “Land Use” grid. 
 
 
 

 



 70 

Accessing Entries in a Table 

The table at right shows generically 
the same information you would 
expect to be associated with any grid.  
It has an unknown number of records 
(8 records in this case) and two fields 
of predictable names: “Value” and 
“Count”.  What if you knew you 
wanted the count associated with 
“Value” equal to 4?  How could you 
get that number?  Here’s how. 
 

theView = av.GetActiveDoc 
flowdir = theView.findtheme("Flow Direction").GetGrid 
DirTab = flowdir.GetVTab 
if (DirTab <> NIL) then 
   DirVal = DirTab.FindField("Value") 
   DirCnt = DirTab.FindField("Count") 
   numrecords = DirTab.GetNumRecords 
   for each i in 1..numrecords 
      tempval = DirTab.ReturnValue(DirVal, i - 1) 
      if (tempval = 4) then 
         Dir4 = DirTab.ReturnValue(DirCnt, i - 1) 
      end 
   end  
end 
msgbox.info(Dir4.AsString, "Count for 4 is:") 

 
The key lines in the above string use the ReturnValue request which has the syntax: 
 

aVTab.ReturnValue (aField, aRecordNumber) 
 
In the above example, aVTab is DirTab (the flow direction table), aField is 

the “Value” field in the first instance and the “Count” field in the second instance.  The 
loop is iterating over all records until it finds a “Value” record equal to 4.  Notice that the 
use of “i – 1” is because the initial record is record “0” while our loop is starting from 
“1”.


